七年级上册·数学 第一章有理数 知识模块 知识要点 正数和负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。 整数:正整数、0、负整数,统称整数。 分数:正分数、负分数。 2.数轴:用直线上的点表示数,这条直线叫做数轴。 画法:画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 5.有理数的大小比较 数轴比较法:数轴左边的数小于右边的数 法则比较:正数大于零,零大于负数,负数都小于正数。 两个负数比较大小,绝对值大的反而小。 有理数的加减法 有理数的加法 ①同号两数相加,取相同的符号,并把绝对值相加。 ②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ③一个数同0相加,仍得这个数。 ④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a ⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b 有理数的减法 ①减去一个数,等于加这个数的相反数。a-b=a+(-b) 先定符号,再算绝对值。 有理数的乘除法 有理数的乘法 ①两数相乘,同号得正,异号的负,并把绝对值相乘。 ②任何数同0相乘,都得0。 ③乘积是1的两个数互为倒数。 ④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。 ⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba ⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b ⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac 有理数的除法 ①除以一个不等0的数,等于乘以这个数的倒数。 ②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 ③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。 ④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。 有理数的乘方 乘方 ①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在中,a叫做底数,n叫做指数。 ②负数的奇次幂是负数,负数的偶次幂的正数。 ③正数的任何次幂都是正数,0的任何正整数次幂都是0。 ④做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。 科学记数法 ①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。 近似数 ①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。 ②近似数与准确数的接近程度,可以用精确度表示。 ③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的 第二章整式的加减 知识模块 知识要点 整式 1.整式:单项式和多项式的统称叫整式。 2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。 3.系数;一个单项式中,数字因数叫做这个单项式的系数。 4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 5.多项式:几个单项式的和叫做多项式。 6.项:组成多项式的每个单项式叫做多项式的项。 7.常数项:不含字母的项叫做常数项。 8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 整式的加减 整式加减运算时,如果遇到括号先去括号,再合并同类项。 1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变 第三章一元一次方程 知识模块 知识要点 从算式到方程 ①方程:含有未知数的等式 ②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。 ③方程的解:使方程中等号左右两边相等的未知数的值 ④求方程解的过程叫做解方程。 ⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。 等式的性质 ①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 ②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 解一元一次方程 ①一般步骤: 1.去分母2.去括号3.移项4.合并同类项5.系数化为一 实际问题与一元一次方程 利用方程不仅能求具体数值,而且可以进行推理判断。 步骤:设未知数·找等量关系·列一元一次方程·解一元一次方程·写答语(检验) 第四章几何图形初步 知识模块 知识要点 几何图形 几何图形 ①把实物中抽象出的各种图形统称为几何图形。 ②几何图形的各部分不都在同一平面内,是立体图形。 ③有些几何图形的各部分都在同一平面内,它们是平面图形。 ④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,,左视图)。 ⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 点,线,面,体 ①几何体也简称体。 ②包围着体的是面。面有平的面和曲的面两种。 ③面和面相交的地方形成线。(线有直线和曲线) ④线和线相交的地方是点。(点无大小之分) ⑤点动成线,线动成面,面动成体。 ⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。 ⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。 ⑧线段的比较:1.目测法2.叠合法3.度量法 直线、射线、线段 ①经过两点有一条直线,并且只有一条直线。 ②两点确定一条直线。 ③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。 ④射线和线段都是直线的一部分。 ⑤把线段分成相等的两部分的点叫做中点。 ⑥两点的所有连线中,线段最短。(两点之间,线段最短) ⑦连接两点间的线段的长度,叫做这两点的距离。 角 角 ①角也是一种基本的几何图形。 ②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。 ③把一个周角等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。 ④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。 ⑤以度,分,秒为单位的角的度量制,叫做角度制。 角的比较与运算 ①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。 4.3.3余角和补角 ①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。 ②两个角的和等于°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。 ③等角的补角相等。 ④等角的余角相等。 八年级上册·数学 第十一章三角形 知识模块 知识要点 与三角形有关的线段 三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点; 三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 三角形的稳定性 三角形具有稳定性 三角形分类:1、不等边三角形等腰三角形等边三角形2、锐角三角形直角三角形钝角三角形 三边性质:两边之和大于第三边。 与三角形有关的角 1、相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形的内角和:三角形的内角和为° 3、三角形的外交和为°. 4、三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形及其内角和 1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 2、多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。 3、各个角都相等、各个边都相等的多边形叫做正多边形。 4、多边形内角和公式:边形的内角和等于·° 5、多边形的外角和:多边形的外角和为°. 第十二章全等三角形 知识模块 知识要点 全等三角形 ⑴全等用符号“≌”表示,读作“全等于”。 ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. (6)全等三角形的性质:全等三角形的对应边相等,对应角相等. 全等三角形的判定 全等三角形的判定定理: ⑴边边边():三边对应相等的两个三角形全等. ⑵边角边():两边和它们的夹角对应相等的两个三角形全等. ⑶角边角():两角和它们的夹边对应相等的两个三角形全等. ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形 全等. 角的平分线的性质 ⑴性质定理:角平分线上的点到角的两边的距离相等. ⑵性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 第十三章轴对称 知识模块 知识要点 轴对称 1、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形. 2、两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。 3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 4、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 5、如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 6、线段垂直平分线上的点与这条线段的两个端点的距离相等; 7、与一条线段两个端点距离相等的点,在线段的垂直平分线上。 画轴对称图形 用坐标表示轴对称:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等. ①点关于轴对称的点的坐标为. ②点关于轴对称的点的坐标为. 等腰三角形 1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角. 2、等腰三角形的性质: ①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角). ③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). 3、等腰三角形的判定: ①有两条边相等的三角形是等腰三角形. ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边). 4、等边三角形:三条边都相等的三角形叫做等边三角形. 5、等边三角形的性质: ①等边三角形三边都相等. ②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一. ④等边三角形是轴对称图形,对称轴是三线合一(3条). 6、等边三角形的判定: ①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 第十四章整式的乘法与因式分解 知识模块 知识要点 整式的乘法 1.基本运算: ⑴同底数幂的乘法: ⑵幂的乘方: ⑶积的乘方: 2.整式的乘法: ⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式. ⑵单项式多项式:用单项式乘以多项式的每个项后相加. ⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 乘法公式 ⑴平方差公式: ⑵完全平方公式:; 因式分解 因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解. 因式分解方法: ⑴提公因式法:找出最大公因式. ⑵公式法: ①平方差公式: ②完全平方公式: 第十五章分式 知识模块 知识要点 分式 1.分式:形如,是整式,中含有字母且不等于0的整式叫做分式.其中叫做分式的分子,叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分. 5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分. 6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 分式的运算 分式的四则运算: ⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为: ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为: ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为: ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为: ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为: 整数指数幂: ⑴(是正整数) ⑵(是正整数) ⑶(是正整数) ⑷(,是正整数,) ⑸(是正整数) ⑹(,n是正整数) 分式方程 1.分式方程的意义:分母中含有未知数的方程叫做分式方程. 2.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根). 九年级上册 第二十一章一元二次方程 知识模块 知识要点 一元二次方程 一元二次方程的定义 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 注意一下几点: 只含有一个未知数;②未知数的最高次数是2;③是整式方程。 一元二次方程的一般形式 一般形式:ax2+bx+c=0(a≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。 一元二次方程的根 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。 解一元二次方程 直接开方法:一般地,对于方程, (1)当时,根据平方根的意义,方程有两个不等的实数根 ,; (2)当时,方程有两个相等的实数根; (3)当时,因为对任意实数,都有,所以方程无实数根; 配方法:通过配成完全平方形式来解一元二次方程的方法,叫做配方法;一般地,如果一个一元二次方程通过配方转化成的形式,就有: (1)当时,方程有两个不等的实数根 ,; (2)当时,方程有两个相等的实数根; (3)当时,因为对任意实数,都有,所以方程无实数根; 公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法;一元二次方程的求根公式: ; 因式分解法:先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现将次,这种解一元二次方程的方法叫做因式分解; 根与系数的关系:如果方程的两个实数根是,那么 ,; 一元二次方程的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用 “”来表示,即; (1),方程有两个不相等的实数根; (2),方程有两个相等的实数根; (3),方程无实数根; 实际问题与一元二次方程 列一元二次方程解应用题的一般步骤: 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。 设:是指设元,也就是设出未知数。 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。 解:就是解方程,求出未知数的值。 验:是指检验方程的解是否保证实际问题有意义,符合题意。 答:写出答案。 第二十二章二次函数 知识模块 知识要点 二次函数的图像和性质 定义:一般地,如果是常数,,那么叫做的二次函数。自变量的取值范围是全体实数。 二次函数的性质: (1)抛物线的顶点是坐标原点,对称轴是轴; (2)函数的图像与的符号关系:①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点。 二次函数用配方法可化成:的形式,其中. 抛物线的三要素:开口方向、对称轴、顶点。 ①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同。②平行于轴(或重合)的直线记作.特别地,轴记作直线。 求抛物线的顶点、对称轴的方法 (1)公式法:,∴顶点是,对称轴是直线 (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. 二次函数与一元二次方程 1、抛物线与x轴的交点的横坐标就是一元二次方程的解。 2、直线与抛物线的交点 (1)轴与抛物线得交点为(0,)。 (2)与轴平行的直线与抛物线有且只有一个交点(,)。 (3)抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根。抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点抛物线与轴相交; ②有一个交点(顶点在轴上)抛物线与轴相切; ③没有交点抛物线与轴相离。 (4)平行于轴的直线与抛物线的交点: 同(3)一样可能有0个交点、1个交点、2个交点。当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根。 实际问题与二次函数 最大利润问题 最大面积问题 建立二次函数模型,利用二次函数的图像和性质解决实际问题中的最值问题。 第二十三章旋转 知识模块 知识要点 图形的旋转 知识点一旋转的定义 在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。 我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。 知识点二旋转的性质 旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。 理解以下几点: 图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。(3)图形的大小和形状都没有发生改变,只改变了图形的位置。 知识点三利用旋转性质作图 旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。步骤可分为: ①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角) ③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。 中心对称 知识点一中心对称的定义 中心对称:把一个图形绕着某一个点旋转°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。 注意以下几点: 中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转°两个图形能够完全重合。 知识点二作一个图形关于某点对称的图形 要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。 知识点三中心对称的性质 有以下几点: 关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分; 关于中心对称的两个图形能够互相重合,是全等形; 关于中心对称的两个图形,对应线段平行(或共线)且相等。 知识点四中心对称图形的定义 把一个图形绕着某一个点旋转°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 知识点五关于原点对称的点的坐标 在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。 第二十四章圆 知识模块 知识要点 圆有关的性质 圆的定义 圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。 圆的相关概念 弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。 等圆:等够重合的两个圆叫做等圆。 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦、弧、圆心角的关系 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。 圆周角定理 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。 圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径。 圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。“同弧或等弧”是不能改为“同弦或等弦”的,否则就不成立了,因为一条弦所对的圆周角有两类。 圆内接四边形及其性质 圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。 圆内接四边形的性质:圆内接四边形的对角互补。 点和圆、直线和圆的位置关系 点与圆的位置关系 点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。 不在同一条直线上的三个点确定一个圆,即经过不在同一条直线上的三个点可以作圆,且只能作一个圆。 三角形的外接圆与外心 (1)经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。 (2)外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。 反证法 (1)反证法:假设命题的结论不成立,经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明命题的方法叫做反证法。 (2)反证法的一般步骤: ①假设命题的结论不成立; ②从假设出发,经过逻辑推理,推出或与定义,或与公理,或与定理,或与已知等相矛盾的结论; ③由矛盾判定假设不正确,从而得出原命题正确。 直线与圆的位置关系 直线与圆的位置关系有:相交、相切、相离三种。 切线的判定和性质 (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 (2)切线的性质定理:圆的切线垂直于过切点的半径。 (3)切线的其他性质:切线与圆只有一个公共点;切线到圆心的距离等于半径;经过圆心且垂直于切线的直线必过切点;必过切点且垂直于切线的直线必经过圆心。 切线长定理 (1)切线长的定义:经过园外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。 (2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆和内心 (1)三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆。这个三角形叫做圆的外切三角形。 (2)三角形的内心:三角形内切圆的圆心叫做三角形的内心。 圆与圆的位置关系 (1)圆与圆的位置关系有五种: ①如果两个圆没有公共点,就说这两个圆相离,包括外离和内含两种; ②如果两个圆只有一个公共点,就说这两个圆相切,包括内切和外切两种; ③如果两个圆有两个公共点,就说这两个圆相交。 正多边形和圆 2正多边形的外接圆和圆的内接正多边形 正多边形与圆的关系非常密切,把圆分成n(n是大于2的自然数)等份,顺次连接各分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。 正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。 正多边形的半径:外接圆的半径叫做正多边形的半径。 正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。 正多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。 正多边形的性质 正n边形的半径和边心距把正多边形分成2n个全等的直角三角形。 所有的正多边形都是轴对称图形,每个正n边形共有n条对称轴,每条对称轴都经过正n边形的中心;当正n边形的边数为偶数时,这个正n边形也是中心对称图形,正n边形的中心就是对称中心。 正n边形的每一个内角等于,中心角和外角相等,等于。 弧长和扇形面积 弧长公式l= 扇形面积公式 S扇形= 圆锥的侧面积和全面积 圆锥的侧面积圆锥的全面积为。 第二十五章概率初步 知识模块 知识要点 随机事件与概率 随机事件 知识点一必然事件、不可能事件、随机事件 在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。 必然事件和不可能事件是否会发生,是可以事先确定的,所以它们统称为确定性事件。 概率 一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A)。 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=。由m和n的含义可知0≤m≤n,因此0≤≤1,因此0≤P(A)≤1. 当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0. 用列举法求概率 用列举法求概率 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=。 用列表发求概率 当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常用列表法。 列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法。 用树形图求概率 当一次试验要涉及3个或更多的因素时,列方形表就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图。树形图是反映事件发生的各种情况出现的次数和方式,并求出概率的方法。 树形图法同样适用于各种情况出现的总次数不是很大时求概率的方法。 在用列表法和树形图法求随机事件的概率时,应注意各种情况出现的可能性务必相同。 用频率估计概率 一般地,在大量重复试验中,如果事件A发生的频率稳定于某一个常数P,那么事件A发生的频率P(A)=p。 学校最好的中医专治白癜风医院北京治疗白癜风最好的医院
|